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slJMMARY

An approximate analysis of the nonlinear effects of initial twist
and large deflections on th”etorsional stiffness of a cantilever plate
stijected to a nonuniform temperature distribution is presented. The .
Von K&m6.n large-deflection equatims =e satisfied through the use of
a variational principle. The results show that initial twist and applied
moments cam have significant effects on the chsnges in stiffness produced
by nonuniform heating, particularly in the region of the buckling temper-
ature clifference. Results calculated by this approximate analysis sre

●

in satisfactory agreement with measured torsional deformations and changes
in natursL frequency.

.

INTRODUCTION

One of the structural problems of high-speed flight is the reductim
of effective stiffness of structures due to the thermal stresses produced
by aerodynamic heating. A reduction in torsional stiffness cm be an
important factor in aeroelastic problems as indicated in references 1 .
and 2. A similar reduction in stiffness produced by thermal stresses .
presumably caused the flutter ad failures of sane structural models
described in reference 3. A simple method for calcul&ng the reduction
in torsional stlffness of thin wings is presented in reference 4. In
reference ~ the results calculated frm a small-deflection plate theory
sre compared with experimentaU# deterndned changes in the torsional
stiffness of a cantilever plate rapidly heated &long the longitudinal
edges. The theory used in refer.ence5 @edicted the general effect of .
thermal stresses on the torsional stiffness, as indicated by measuremmtsm
of torsional deformation and changes in natural frequency of tibration,
but overestimated the magnitude of the changes.

-



z

The purpose
SJ@YSiS to show

NACA TN 4067

of this paper is to present the results of an approximate .

that the differences between theory and experiment noted
in reference 5 are due to the notinear effects of large deflections and
initial deformations not included in the small-deflection analysis. The

b

analytical approach used to account for large deflections snd initial
deformations is presented, the general significance of the results is
discussed, and calculated values sre compared tith the experimental data
of reference ‘j.
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SYMI!OLS

plate length in x-direction

coefficients of series expansion

half-plate width in y-direction

for plate deflection

cc-efficientof

plate flexural

stress function

=3
stiffness, / ..

modulus of elasticity

stress function defiting stress distribution in plate

selected functions of x and y

values obtained from definite integrals

torsional stiffness

torsional stiffness of flat, unstressed plate.

incremental torsional stiffness

initial incremental torsional stiffness before heating

minimum incremental torsional stiffness

nondimensional moment

applied moment (positive in direction of positive twist)
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pressure

T

AT

ATcr

w

‘i

a

P

P

‘%’

T

plate thicbess

temperature

particular temperature difference

critical value of AT

total plate deflection

initial plate deflection

coordinate sxes

coefficient of thermal expansion

small dynamic perturbation

exponential parsmeter of temperature distribution function

twist at plate tip

initial twist at plate tip

temperature ratio, ‘l@cr

value of h corresponding to A(GJ)fin

Poisson’s ratio

density

normal stresses in plane of plate in x- and y-directions,
respectively, positive for tension

shear stress in plane of plate

time

nondimensional twist

initial nondimensional twist

circular frequency

circulsr frequency of unheated perfect plate

.
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WL initial circular frequency

%n .. minimu circular frequengy _

$ a2differential operator, — ; 82

ax2 ay2

74 34 +2 34
M“fferential operator, —

a4

ax4 8X2 ay2 + ~

Double dot indicates second derivative with respect to time.

ANALYSIS

Statement of Problem

The studies presented herein are primarily concerned with the twist
of a uniformly thick rectangular cantilever plate shown in figure 1. The
equations are derived to consider the effects of initial twist, applied
moments, and thermal stresses on the torsional deformations and natural
frequencies of plates. The analysis involves an approximate solution of
the Von K&m& large-deflection equations which have been modified to
include the effects of initial imperfections and nonuniform temperature
distributions. The modified equations are (from ref. 6)

(++(w-wi)=;+.—— ——- )t~2F~2W+ i% b2W 2 i% ‘a2W
D 8Y2?)X2 ax2 ay2 ax ay ax by

where F is the stress function such that

(lb)

.-

b

.

(2a)
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(2b)

#F
‘v =

.—
ax ay

(2C)

Equation (la)
plane of the plate

is the differential equation for compatibility in the
snd equation (lb) is the differential equation for

equilibrium of forces acting perpendicular to the plane of the plate.
The solution of equations (1), subject to the proper boundary conditions
on the deflections and stresses, describes the behavior of the plate under
the applied loads p and the temperature distribution T. For the pur-
pose of this paper the assumption is made that no external loads are
applied in the plane of the plate so that the inplane stresses defined
by the stress function F sre zero at the free boundaries (stress-free
edges). Equations (1) apply to both the dynsmic and the static problem
if p includes the dynsmic losds as well as static loads.

Approximate Solution of Equations

Exact solutions of the Von K&m&n large-deflection equations are
difficult to obtain, but approximate solutions can be obtained to any
desired accuracy by several methods. For the analysis herein equations (1)
will be satisfied through the use of the following variational principle:

( )]+,)=2 Hy-
ax ay

(3)
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This principle is essentially a particu@ization of one given by
.

Reissner (ref. 7) sad also has been modified to include the effects of
initial deformations and a nonuniform temperature distribution, The k.
deflection w must satisfy the geometrical boundary conditions, that
is, the conditions imposed on slopes and deflections. Variation of
equation (3) with respect to F yields equa{ion (la) and the associated
natural boundary conditions, and variation with respect to w yields
equation (Yb) snd the associated natural boundary conditions.

The following assumptions for stress, deflection, and temperature
are made:

F= Cfl

w= bf3f2

Wi = beifp
(4)

T= ATf3
J

where the stress coefficient C and the tip twist e are to be deter-
mined by means of the variational principle. The functions fl, f2,

and fz, the initial tip twist Qi, and the temperature coefficient AT
A

are pr&umed to be known. Selection of these quantities is discussed in
appendix A. It should be noted here that, although the temperature
distribution is considered to vary with time, the shapss of the plate

.

deflection and of the stress function sre assumed to remain constsnt
during heating or loading.

The unknown coefficient of the stress function C is obtainedby
substituting equations (4) into equation (3) and taking the variation -.

with respect to C. The result is

,=--&AT(:)+~2(e2- ‘:)(~)

where ,

(5)

tidy

(6)

.
—

.
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(7)

The relation between the twist,
obtained by performing the vsriation
twist e with C! held constant. The resulting relationship is

the load, and the temperature is
on equation (3) with respect to the

m’ (e - ei} 14 + 2tcb2e13 - b
J

pf2dxdy=0 (9)

where

The pressure
loading p6

loading p now will be considered to consist of a static
and a dynamic or inertia loading @t V so that

P’ Pg -ptc (u)

For this analysis the lateral

to two equal concentrated loads P
y = i-b in “sucha way as to form a

l-m

// pfz dx *

static load ps will.be restricted

applied at the corners x=a,
couple about the x-axis. Then

. &I
2b5 - ptb@ (12)

—.,



and 5 is the Dirac delta function.

If the value of C from equation
tion (9) and the terms are rearranged,
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(13)

(14)

“(15)

.

b

(5) is.. substituted into equa-
the resulting expression is

(1)22tb2e ~M 13~2tb2 ~16 +~
b2(e -

d Ee(e2 - eiq
13

%‘i)14=2D5-~~ .. .ll D 1

(16)

which gives the relationship between twist, applied moment, inertia
loading, and temperature.

Definition of Psrmneters

It is convenient to define certain parameters which
from equation (16) when the large-deflection_effectssre
the initial twist f3i is O. Then, from equation (1.6)

If the plate is not vibrating and no loads
or buckling, temperature difference is obtained

D 1114
ATcr = ——”

2EM 1213

s

.“

can be obtained
neglected and

.-

(17)

we applied, the critical,
from equatfon (17) as

.._r

(18)

.
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. Similar3y, when the plate is not vibrating and the temperature is
uniform (AT = O) but the loq.dis acting, the moment-twist relation is”

4 giVeIl by

‘=&
(19)

where (GJ)o is the torsional stiffness of the flat plate given by

(GJ)o = 2ab% ~ (20)

In the absence of heating and loading the

/

frequency may be found to be

When
tion

equations (18), (19), (20), and (21)
(16) the result may be written as

(21)

sre substituted into equa-

0 Lw+x9- 2 2Etb2 (~3)2
-ei =&-%2 mm e(e2 - ei )Y— (=)

1114

If a ‘inondimensional~l

along with a

twist is defined so that

nondimensional moment

Q

end a temperature ratio
.

J2Etb2 (13)2m.& ~—
1114

(23)

(24)

(25)
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equation

The

equation

becomes

NACA TN 4067—.

(22) may rewritten simply as =

(26)

Application to Static Problem

relationship between twist, moment, aridtemperature is given by

(26) when the dynamic term ~ ~- is O. Equation (26) then
%

.

*

(27)

The incremental stiffness of’the plate, defined as the rate of change of
moment with respect to twist, iS given by

.-

A(GJ) a aM=—- —
(GJ)o (GJ)o ?l13

6

or, from equation (27),

A(GJ) .*=l

(GJ)o aq -
A+3$-qf

.

(28)

Application to Dynmic Froblem

In order to determine the effect of temperature, moment, and initial
ttist on the natural frequency of torsional tibration, the quantity q
in equation (26) is replaced by q + E sin UYT where q is considered
to be the static solution obtained from equ.athn (27) and E represents
a smalJ dynamic perturbation about the static equilibrium position. Sub-
tracting equation (27) fkom the perturbate~drelation, neglecting higher
order terms in e, and dividing by G sin UT yields



NACA TN 4067 U.

.
The frequency may then be written in terms of the twist and tempera-

ture as
.

which is identical to
results from assuming

the incremental stiffness (eq. (28)) . This identity
similsr deflection m&Le shapes for thermal buckling,

twist due to applied moment, and torsional vibration and would not be
expected to apply if the mode shapes involved were different.

RESUTJ17SAND DISCUSSION

General Results of Equations

The behavior of the plate as determined by equation (26) is discussed
in the following sections for several conibinationsof conditions. Ih most
cases the calculations include lsrge values of initial twist and applied
moment and have been carried well into the region where the temperature
difference AT exceeds the critical value. Although some of the results
may be beyond the range for which the analysis is accurate, these results

> have been presented to illustrate the trends indicate~ by the equations
despite the fact that they may not be quantitatively correct in some
regions.

.

Twisting due to an applied mcment.- The twisting of the plate due
to an applied moment is given by equation (27) if the temperature ratio A
is set equal to O. The results frcm this expression are presented f- fig-
ure 2 for vsrious values of the initial twist.

In figure 2, small-deflection results would plot as lines at 45° to
the coordinate axes. The lsrge-deflection results beccme increasingly
different as the moment or initial twist is increased and indicate that
the plate beccmes stistantially stiffer as the twist is increased.

Buckling due to nonuniform heating.- The twist of the plate (assuming
that the buclding mode is a twisting action) is given by equation (27)
when the moment m is O; for the initially flat plate q

+
would also

be O. The initially flat, or perfect, plate begins to de orm only after
the critical temperature difference is reached, whereas, as indicated by
equation (27), the plate with initial twist begins to deform immediately

* upon heating. The results obtained frcm evaluation of eqution (27) are
given in figure 3 for several values of the initial twist.
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If the
ratio, Eke

initial twist is large, a plot of twist agsinst temperature .

figure 3, does not give an accurate indication of the buckling “-
temperature. Only if the initial twist is small is there a definite knee ,
in the curve as the buckling temperature is approached~ but this knee
occurs below the buckling temperature of the perfect plate.

Conibinedaction of applied moment and nonuniform heatinq.- Equa-
tion (27) applies directly to this case but nqy be more conveniently
written as

9-P’- (Ncp-+qcp2-@2)=0

where

(30)

(31a)

and .

A’ = A- (m2 +2m~) (31b)
a

Equation now has the same formas equation (27) when m is set
equal to O. The results plotted in figure 3 theh apply to this case

.

also if q~ is replacedby q’ and A by h’. The moment then effec-
tively acts the ssme as an initial twist if the teniperatureratio is

reduced by the quantity m2 + 2m~.

In figure 4 the relation between moment and twist has been indicated
for two values of initial twist “&ndsever~ values of A. These curves
show the characteristicincrease in stiffness aa the twist increases but
also show a reduction in stiffness as the temperature ratio increases.
These changes in stiffness are examined further in the following section.
The portions ‘ofthe curves where ;theslope is negative have been shown
“asdashed lines and are regions of unstable~uilibrium which would not
exist in.the physical problem. me unstable portion of the ctive exists

whenever A + %2 - 3q? > 1.

Frequency and incremental stiffness.- As has,been noted, the qqusre
of the frequency ratio (eq. (29)) varies in.the ssme manner’as the incre- - .
mental stiffness (eq. (28)) Wd, therefare, w o,fthe following discus-
sion pertaining to stiffness applies directly to the square of the fre-
quency. Alsoy the figures which are presen&d for the incremental .

stiffness have been labeled with the s“quareof the frequency ratio as
well as with the stiffness ratio.
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The variation in incremental stiffness

13

with temperature given by
equtim (28) is shown in figure 5 for several value= of init~al twist
when m is equal.to O. The results show that, when the perfect plate
is heated, the stiffness decreases linearly as the thermal stresses
develop and becomes zero when the buckling temperature difference is
reached. Further heating causes the plate to ttist end the twisting in
turn leads to an increase in stiffness at a rate twice that of the initial
decrease.

If the plate has an initisl ttist, the heating causes the twist to
increase as the heating progresses. This twist leads to an increase in
stiffness that tends to counteract the reduction produced by thermal
stresses and, as a result, the stiffness first decreases and then
increases without going to zero. The points of minimum stiffness occur
at temperatures lower than the buckling temperature. The locus of points
of minimum stiffness has been indicated in figure 5 by the dashed line.
If the initial twist is sufficiently large, the stiffness does not
decrease but increases with heating.

When a moment is applied to the plate, figure 5 will indicate the
incremental stiffness of the plate if cpi is replacedby (p’ and A

by 1’ (as defined by eqs. (31a) and (31b)).

The locus of points where the incremental stiffness is a minimum
is given by the equations

or

2/3

()
&in= l-9L2-3qi~m

A(GJ)~n .

(GJ)o
2(1 - ~n. ‘-‘i?)

. .

(32)

(33)

(34)

Equations (33) and (~) show that the nonuniform heating will increase
the stiffness of the plate if the ititial twist is greater than that
given by

()
2/3

qi+m
37

2
+Qi =1
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The initial.incremental stiffness of the plate is given by equa-
tion (28) when A is O. The ratio of the miqimum to the initial incre-
mental stiffness“thereforemay be written as

,

.*

2/3

A(~)tin ()
~~ip?

=
A(GJ)i l+3q?-qf

(35)

Some results from equation (35) have been plottetlin figure 6. l%is fig-
ure indicates that smald changes in the initial twist M&y cause lsrge
changes in the minimum incremental stiffness. The effects of applied
moment are again similar to those of initial twist and certain combina-
titms of the two can lead to drastic stiffness changes. For negative
values of gi the curves would be similar, with the stiffness ratio

going to zero whene~er Pi = -m-

Comparison With Experiment

Results calculated with the previously derived equations sre compared
in the following sections with the experimental results re-portedin refer-
ence 5. The results given in reference ~ are-for a square cantilever
plate which was heated along the two longitu@al edges by carbon-rod *

radiators. Typical temperature histories of>oints on the heated edge
and on the longitudinal center line are given in figure 7. Heat was
supplied to the pla$e edges for 16 seconds; then the plate was allawed

“.

to cool. The deformations of the plate under the influence of nonuniform
heating were determined for the conditions of no load and applied positive
and negative tip moments. The changes in natural frequency of the first
torsion mode were also measured during a heating test.

The expressions used in reference ‘jfor stresses, deflections, and
temperature are retained except that herein only three terms are used
for the deflections. In nondimensional form these expressions are

f,=[($-lrp’-j’ (36)

(37)
,

.



NACA TN 4067

and

/()‘3=5
(38)

The function f~ satisfies the condition of zero stress on the free

edges and f2 specifies zero slope and deflection along the root. The

two undetermined coefficients of eqmtion (37) ere established from the
small-deflectionbuckling analysis smd carried through the large-
deflection analysis as constants. Their values ae given in appendix A
along with data on the influence of the nuniberof terms in the deflection
function on the accuracy with which the buckling temperature difference,
natural frequency, and ratio of twLst to an applied moment can be calcu-
lated. The exponential parameter ~ of the temperature function is
adjusted to approximate the v=iation in the temperature distribution
during a test.

The numerical evaluation of the integrals and related functions
required for comparison of theory and experiment sre given in appendix B.

Initial plate shape.- The initial shape of the plate of reference 5
was measured snd is indicated in figure 8. In the selection of a value
of initial twist, the higher order shapes (which ere unlikely to have
much influence on the twisting) have been ignored. The free corners
were connected by a straight Ene in order to obtain a value of initial
twist of” Eli= 0.35° which was used for comparison of theory and
experiment.

Twist due to an applied moment.- The deformations resulting from
heating for three values of applied tip moment are presented in figure 9
and compsred tith curves calculated by use of a value of ei = 0.35°.

The agreement between theory and experiment is satisfactory, although
the theory overestimates the twist in the ticinity of the maximum temper-
ature difference (about 16 seconds). No theoretical results are presented
past 20 seconds because, beyond this time, the actual temperature distri-
bution cannot be represented very well by the one-psremeter temperature
function.

Another comparison of measured and calculated deformations is shown
in figure 10 where the abscissa is the temperature difference instead of
time. Because the shape of the temperature distribution changes with
time, the portion of the curve for decreasing AT does not retrace the
heating portion.

Natural frequency.- The chmges in natural frequency during a heating
test sre shown in figure 11 snd compared tith a calculated curve for
ei = 0.35° smd with the small-deflectionresults of reference 5. The

results calculated by the use of the large-deflection equations are in
good agreement with experimental values and account for the frequency
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increase
Stantial
theory.
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measured in the vicinity of the buckling temperature. A sub-
improvement is noted over the ~edictions of small-deflection
In figure 12 the frequency ratio is shown as a ffiction of

temperature difference.

CONCLUDING REMARKS

An approximate analysis of the effects of initial twist and large
deflections on the torsional stiffness of a cantilever plate subjected
to nonuniform heating shows that for a perfectly flat plate the effective
stiffness, and thus the torsional frequency, decreases with increasing
thermal stress, just as predicted by small-deflectiontheory, and goes
to zero when the buc~ng temperature difference is reached. Beyond
the buckling temperature, however, the stiffness, and thus the frequency,
increases as the plate twists. If the-plate has an initial twist, it
begins to deform immediately upon heating and the stiffness decreases
in much the same way aathat of the perfect ~late. The incremental
stiffness of the initially twisted plate, however, reaches a minimum
greater than zero before the theoretical buckling temperature difference
is reachd; further heating then increases the stiffness. The minimum
incremental stiffness is a function of the initial twist and, if the
initial twist is sufficiently large, no reductions in stiffness are
obtained and nonuniform heating then d.ways increases the stiffness. I

These results for stiffness changes associated with the torsional
frequency me also applicable to the stiffness of the plate with respect
to small changes in the a~lied moment.

.
In this case the applied moment

has sn effect similar to the effect of an initial twist. If the applied
moment exactly counteracts the initial twist, the plate behaves in much
the ssme way as the perfect plate.

Calculated results were compared with available experimental data
and were found to be in satisfactory agreement in view of the approximate
nature of the calculations.

Lsngley Aeronautical Laboratory,
Nationa LAdvisoryCommittee for Aeronautics,

Qey Field, Vs., WY U, 1957.
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DISCUSSION OF KIDldLFUNCTIONS USED IN TEE AN&LYSIS

IiIthe analysis of the torsional deformations of the cantilever
plate by small-deflection theory, a deflection function containing six
tezms antisynmetrical in the coordinate y was.used. The function
(eq. (8] in ref. 5) is

w= A~x2y + A14x2?+ A22x3y+ ~4x3?+A32x4y +A34x4? (@ “

The effect of various cotiinations of terms on”the calculated critical
temperature difference, torsional frequency, and moment-twist relation was
investigated for a square cantilever plate (a/b = 2) by use of the small-
deflection theory of reference 5. The following table shows the results
obtained by starting with a single term Au and then progressing through
other combinations to six terms:

Terms used
ATcr & ~
K1 ~. 0

A= 103.9 127.o 0.324 X 106

%29 422 57.7 77.5 .278

A~) &> ’32 50.4 71.3 .273
57.2 77.4 .278AW %2> %4) %4

~~~ A22~ A32~ %4~ A24~ A34 ~.o 70.1 .273

where K1 and K2 represent constants that include the plate dimensions
end material properties.

Inasmuch as the tabulated values were obtained frmn an application
of the Rayleigh-Ritz procedure, the lowest value is the most accurate.
The use of six terms improves the accuracy less then 2 percent over three
terms end, consequently, is not worth the extra complication. ‘l?pelarge-
deflection analysis thus csn be made by use of only three terms. The
deflection function is nondimensionalized for this analysis and expressed
in the form

(A2)
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The relative values of these coefficients for the conditions given
in the preceding table were obtained from the small-deflection analysis
of reference 7 for the square cantilever plate (a/b = 2) with the
following results:

1 Al
Condition %2

1+A1+A2 1+A1+A2 1+A1+A2

Thermal buckling (A= 1, U/q = o) 4.61 -’5.75 2.14

Torsional tibration (A= o, ti~~ = 1) 3.63 -4.06 1.42

Applied moment (X = 0) 2.36 -2.01 0.65

Applied moment (A = 0.5) 3.10 -3.20 1.10
1

The variation of f2 with x/a for these four conditions has been
plotted in figure 13. The table indicates a wide vsriation in the rela-
tive values of the coefficients but the plotted data sh&” that the defi@c-
tion shapes are ~ approximately the s~e. Then, so long as the calcu-
lations are used to indicate changes from the initial conditions, any of
the mcdes indicated should be satisfactory.

—

In addition to the deflecticm function of equation (A2), a stress
1

function and a temperature function sre required in the analysis and
have been selected to correspond to those of reference 5. For convenience, .
the functions are expressed in nondimensional form as follows: —

(A3)

(A4)

—

The exponent ~ must be selected to describe best the measured tempera-
ture distribution at the time of interest. ‘~ote -thatequation (A4)
requires that the specified temperature difference AT be the difference

—

between temperatures at the heated edges and the lon@tudinal center tine.
.-

The fumction f~ has been chosen so that the stresses vsmish on the free
—

boundaries. Along the root (x = O) the function requires that the
plate be free to expand parallel to the y-axis. “Althoughthis require-” -

___ ..._

ment does not inticate a “built-in’~condition, it probably resembles t-he
.—

actual test condition. -.—
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APPENDIX B

r

EVALUATION OF lMC13XAIS AND RELATED FUNCTIONS

The integrals indicated in the analysis have been evaluated in terms
of the plate dimensions and the nondimensional functions given in
appendix A. The integrals me as follows:

= (M$@’+4(:)2+j (Bl)

14 =

=

328

(

4 Al, + 1.6A,2 Al 16A,

)
+ %4=

‘~
—.

‘%- 693 ‘Z +315 20
(B3)

l>b(l +Al +A2)

b

[

Q + 8A12
23a3(l+Al+~)

28

()(

18A12 32A,2
2(1-U): ~+T+T

j
3% +8AlA,+6Al+—
5

(B’)
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ab

[J15= o -~ [b(X-~) b(y-b) - 5(Y*)]f2 dy ti = 2

●

(B5) .

ab

JJ b

%2+%2+3+%16 = f22 dydx=
2ab

)

+ %4~+— —
o -b A2)2 7 9 37 4

(B6)

3(1 +Al +

cantilever plateFor the sq.mre
and A2 given in appendix A for the
integrals 11
equals 0.33:

The integrals
stisequently.

to 14 reduce to the

IL =

12 =

13 =

(afi = 2) and the values of Al
thermal-bucklingmode, the
following when Poisson~s ratio p

(B7)

The critical temperature
becomes

256 L
T(g+3)(g+l)

1.520
a2

99567
*2

(B1O)

have not been included but sre discussed

M& = 18.5

(B8)

(B9)

clifference given by equation (18) then

[

D (~+1)(~+3)

Ez.ta2 c
J

(BH)

.



NACA TN 406~ 21

The twist snd applied moment are related to their correspcmding nondimen-
sional quantities by equations (23) and (24) and may now be expressed as

9 r= 0.035 e + (B@

/

2
m = 0.035 L ~

(GJ)()
(B13)

Use of the thermal-bucklingmode yields incorrect values for the
natural frequency and the twist due to applied moment. In addition, the
measured values differ slightly from the correct calculated values as a
result of the imperfect clamping at the rmt of the cantilever plate.
For these reasons, the measured initial values of torsional frequency
and twist due to &
chs.ngesprcduced by
equations:

The integrals

applied moment sre used in the calculations and the
the heating cycle sre calculated from the following

qi i-m
A =1-— ++-~i2 (B14)

9

UJ2()G
1~ and 16

natural frequency and-twist due
evaluated for the mode shape of

1 A + 392 (B15)

are needed only to calculate the initial

to applied moment and, thus, have not been
thermal buckling.

In the calculations, results of which are presented in figures 9,
10, 11, snd X2, the following quantities were used:

E= 10.6 X 106 pSi

M.8X 10-6 ~-~a=

p = 0.33
t = 0.25 in.
a = 20 in.
b = 10 in.
ei = 0.350
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Figure l.- Dimensions and coordinate system of cantilever phte.
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Figure 2.- Calculated twist as a function of applied moment for several
values of the initial twist.
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incremental stiffness as a function of initial twist for several values
of applied moment.
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Figure 10.- Comparison of measured and calculated values of twist as a
function of temperature difference for three values of the applied
moment.
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